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ABSTRACT  

Fluid mechanics can be divided into fluid statics, the study of fluids at rest; fluid kinematics, the study of 

fluids in motion; and fluid dynamics, the study of the effect of forces on fluid motion. Fluid mechanics 

concerns itself with the investigation of motion and equilibrium of fluids. We normally recognize three states 

of matter: solid, liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the 

ability to resist deformation. Because a fluid cannot resist the deformation force, it moves, it flows under the 

action of the force. Its shape will change continuously as long as the force is applied. A solid can resist a 

deformation force while at rest, this force may cause some displacement but the solid does not continue to 

move indefinitely.  
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INTRODUCTION 

Micropolar fluids are fluids with microstructure belonging to a class of non-Newtonian fluids with non-

symmetrical stress tensor. Micropolar fluids have the micro-rotational effects and micro-inertia effects. The 

concept of micro-rotation was initially proposed by Cosserat and Cosserat (2016) which was applied 

successfully to describe the flow of fluids with micro-structures [Condiff and Dahler (2012). Inspired by 

them, Eringen (1964) analyzed a new class of fluids called “micro fluids” exhibiting micro effects similar to 

simple micro-elastic materials. In these fluids local structures and micro-rotations of the material particles 

contained in each of its volume element i.e. gyration effects play an important role. The stresses and stress 

moments are functions of deformation rate tensors and various micro-deformation rate tensors and hence 

these types of fluids are quite complicated to the extent that even in the simplest case of constitutive linear 

theory, these contain 22 viscosity coefficients. Therefore it is not easily amenable to construct and analyze 

the mathematical models of such type of problems. Eringen (1966) introduced a subclass of these fluids 

called micropolar fluids, in which micro-rotational effects like micro-rotational inertia are important and 

included in the analysis but micro stress stretch of the particles is not allowed. These fluids can support the 

couple stress, the body couples, the non-symmetric stress tensor and a rotation field independent of velocity 

field. The theory, thus, has two independent kinetics variables: the velocity vector and the spin or micro-

rotation velocity vector. This theory involves only four additional viscosity coefficients, one introduced 

through the linear constitutive equation for a non-symmetric stress tensor and other three due to linear 

constitutive equation for a couple stress, hence converts to a simple, elegant and realistic theory.  

 

REVIEW OF LITERATURE  

The stability of flow of a fluid through a porous medium taking into account the Darcy resistance was 

considered by Lapwood (2005) and Wooding (2010). Agarwal and Dhanpal (1988) examined the classical 

couette-poiseuille flow and heat transfer in micropolar fluids between two co-axial porous circular cylinders. 

Desseaux and Kelson (2010) considered boundary layer flow of a micropolar fluid driven by a porous 

stretching sheet. Kelson et al. (2013) investigated two dimensional flow of a micropolar fluid driven by 

suction or injection in a porous channel. Zakaria (2014) investigated the influence of a transverse magnetic 

field on the motion of an electrically conducting micropolar fluid through a porous medium in one-

dimension. Kamal et al. (2006) analyzed numerically the steady viscous flow of a micropolar fluid driven by 

injection between two porous disks. Naduvinamani and Marali (2008) studied the rheological effects of 

http://en.wikipedia.org/wiki/Fluid_statics
http://en.wikipedia.org/wiki/Kinematics
http://en.wikipedia.org/wiki/Fluid_dynamics
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micropolar fluid lubricants on the steady state and dynamic behavior of porous slider bearings by considering 

the squeezing action. Rahman (2009) numerically investigated the steady laminar free-forced convective 

flow and heat transfer of micropolar fluids past a vertical radiate isothermal permeable surface with viscous 

dissipation and Joule heating. Reddy et al. (2010) investigated the oscillatory two-dimensional laminar flow 

of a viscous incompressible electrically conducting micropolar fluid past a semi-infinite vertical moving 

porous plate embedded in a porous medium and subjected to a uniform transverse magnetic field in the 

presence of thermal radiation effects. Islam et al. (2011) numerically examined the MHD micropolar fluid 

flow through a vertical porous plate using Finite Difference Technique. 

 

FORMULATION OF THE PROBLEM 

Consider the stability of an incompressible micropolar fluid, saturated in a porous medium, confined 

between infinite horizontal free planes at a finite gap d. In the Cartesian frame of reference, the axis of x is in 

the main flow direction and the axis of z is perpendicular to the planes so that the gravity acts in the negative 

z-direction. 

 

  

 

 

 

 

 

 

Fig. 1: Geometrical configuration 

 

 

 

 

 

 

 

 

 

Let q , ω,  p, g, 
z

e , j,  ε  and k1 denote velocity, micro rotation velocity, density, pressure, acceleration 

due to gravity, unit vector in z-direction, microinertia constant,  coefficient of viscosity, porosity and 

permeability of the porous medium respectively. The parameters 
r

ε', β'', γ andμ stand for the micropolar 

coefficients of viscosity. 

 

 

 

 

Obeying Darcy’s law the equations governing the flow of micropolar fluid are 
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BASIC STATE 

The initial state is such that the fluid is at rest, micropolar velocity ω= 0 and the density and pressure 

depend upon z only. Thus the initial state is characterized by  

q = (0, 0, 0),  

ω= (0, 0, 0),  

p = p (z)  (1.5) 

 

NORMAL MODE ANALYSIS 

The perturbations are decomposed into wave like components as 

     x yf x, y, z, t f z  exp ik x ik y σt    , (1.6) 

where kx and ky are real wave numbers in x and y directions, )k(kk 2
y

2
x

2  and )iσ(σσ ir   is the complex 

number.  

On using the non- dimensional parameters 

D),,kd(k,)D,k,(k xx   
2d

j
j   and 

μ

σdρ
σ

2
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where d is the characteristic length, the final stability governing equation, after dropping stars, is given by 
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The boundary conditions appropriate for the problem are 

w =0, D
2
w =0, at z =0 and z =1.       (1.8) 

 

ANALYTICAL DISCUSSION  

Multiply equation (1.9) by w*, the complex conjugate of w, integrate over the range of z and make use of 

boundary conditions (1.10). The real and imaginary parts of the resulting equation respectively yield 
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   (1.9)                                                                                                                                  

In the analysis given below, two cases have been discussed depending upon whether the system is statically 

stable. 

 

NUMERICAL DISCUSSION 

CASE I: μJ > 0 ( i.e. 
O

Dρ <0) 
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In Table - 1 values of critical wave number ck  representing the change of oscillatory stable region to 

oscillatory unstable region for fixed μJ are given.  

Table – 1: Value of critical wave number representing change of oscillatory stable modes into 

oscillatory unstable modes for variable permeability. 

J = 0.25 

1k  

K=1 K=3 K=5 

kc  

oscillatory  

stable 

modes 

kc  

oscillatory  

unstable 

modes 

kc  

oscillatory  

stable 

modes 

kc  

oscillatory  

unstable 

modes 

kc  

oscillatory  

stable 

modes 

kc  

oscillatory  

unstable 

modes 

2   1.4564 1.4565 1.2616 1.2617 

2.1 4.4978 4.4979 1.3613 1.3614 1.1916 1.1917 

3 1.4641 1.4642 0.9373 0.9374 0.853 0.8531 

4 1.0517 1.0518 0.7487 0.7488 0.6904 0.6905 

5 0.8672 0.8673 0.6432 0.6433 0.5967 0.5968 

6 0.7562 0.7563 0.5733 0.5734 0.5338 0.5339 

7 0.6799 0.68 0.5225 0.5226 0.4877 0.4878 

8 0.6232 0.6233 0.4834 0.4835 0.4521 0.4522 

9 0.5788 0.5789 0.4520 0.4521 0.4234 0.4235 

10 0.5429 0.543 0.4262 0.4263 0.3996 0.3997 

11 0.5130 0.5131 0.4044 0.4045 0.3794 0.3795 

12 0.4876 0.4877 0.3856 0.3857 0.3622 0.3623 

13 0.4657 0.4658 0.3693 0.3694 0.3471 0.3472 

14 0.4466 0.4467 0.3549 0.355 0.3338 0.3339 

15 0.4296 0.4297 0.3421 0.3422 0.3219 0.322 

20 0.3668 0.3669 0.2940 0.2941 0.2771 0.2772 

25 0.3254 0.3255 0.2619 0.262 0.2471 0.2472 

30 0.2955 0.2956 0.2384 0.2385 0.2252 0.2253 

40 0.2543 0.2544 0.2058 0.2059 0.1946 0.1947 

50 0.2266 0.2267 0.1837 0.1838 0.1738 0.1739 

100 0.1591 0.1592 0.1295 0.1296 0.1226 0.1227 

 

It is clear that as permeability 
1k  and micropolar parameter K increase, region for oscillatory unstable 

increases. Values of critical wave number 
ck  representing the change from oscillatory unstable region to 

oscillatory stable region for fixed 3k1  . 

 

Table – 2: Value of critical wave number representing change of oscillatory stable modes into 

oscillatory unstable modes for variable J1. 

 

1k = 3 

μJ  

K=1 K=3 K=5 

kc  

oscillatory  

unstable 

modes 

kc  

oscillator

y  stable 

modes 

kc  

oscillatory  

unstable 

modes 

kc  

oscillatory  

stable 

modes 

kc  

oscillatory  

unstable 

modes 

kc  

oscillatory  

stable 

modes 

0.1 1.434 1.435 0.9121 0.9122 0.8315 0.8316 

1 1.5871 1.5872 1.0441 1.0442 0.9469 0.947 

2 1.7136 1.7137 1.1547 1.1548 1.0474 1.0475 
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3 1.8155 1.8156 1.2437 1.2438 1.1300 1.1301 

4 1.9016 1.9017 1.3188 1.3189 1.2006 1.2007 

5 1.9768 1.9769 1.3843 1.3844 1.2625 1.2626 

6 2.0438 2.0439 1.4425 1.4426 1.3179 1.318 

7 2.1046 2.1047 1.4950 1.4951 1.3681 1.3682 

8 2.1602 2.1603 1.5430 1.5431 1.4142 1.4143 

9 2.2116 2.2117 1.5873 1.5874 1.4567 1.4568 

10 2.2596 2.2597 1.6285 1.6286 1.4964 1.4965 

11 2.3045 2.3046 1.6671 1.6672 1.5335 1.5336 

12 2.3469 2.347 1.7033 1.7034 1.5685 1.5686 

13 2.3870 2.3871 1.7376 1.7377 1.6015 1.6016 

14 2.4250 2.4251 1.7701 1.7702 1.6329 1.633 

15 2.4614 2.4615 1.8010 1.8011 1.6628 1.6629 

16 2.4961 2.4962 1.8305 1.8306 1.6914 1.6915 

17 2.5293 2.5294 1.8588 1.8589 1.7187 1.7188 

18 2.5613 2.5614 1.8859 1.886 1.7450 1.7451 

19 2.5921 2.5922 1.9120 1.9121 1.7702 1.7703 

20 2.6217 2.6218 1.9371 1.9372 1.7946 1.7947 

21 2.6504 2.6505 1.9613 1.9614 1.8180 1.8181 

22 2.6782 2.6783 1.9848 1.9849 1.8407 1.8408 

23 2.7050 2.7051 2.0074 2.0075 1.8627 1.8628 

24 2.7311 2.7312 2.0294 2.0295 1.8840 1.8841 

25 2.7564 2.7565 2.0507 2.0508 1.9047 1.9048 

26 2.7811 2.7812 2.0715 2.0716 1.9248 1.9249 

27 2.8050 2.8051 2.0916 2.0917 1.9443 1.9444 

28 2.8284 2.8285 2.1113 2.1114 1.9633 1.9634 

29 2.8512 2.8513 2.1304 2.1305 1.9819 1.982 

30 2.8734 2.8735 2.1490 2.1491 1.9999 2 

 

CONCLUSION 

In the present chapter the stability of Eringen micropolar fluid saturated in an isotropic porous layer obeying 

Darcy's law has been examined. Analytical and numerical analysis provide the following results 

For μJ > 0   

 the stability of non-oscillatory modes, if 
 

1

ε 1+K
1

k AK
  

 the bounds for arbitrary non-oscillatory unstable modes if 
 

1

ε 1+K
1

k AK
  

 the semi-circular bounds for oscillatory unstable modes 

 the increase in the range of oscillatory unstable region with the increase in permeability parameter 

1k and micropolar parameter K 

 destabilizing character of micropolar parameter K. 

For μJ < 0   

 stability of oscillatory modes 

 instability of non-oscillatory modes 

 stabilizing character of micropolar parameter K 

 destabilizing character of permeability parameter 1k .  
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This is important to note that micropolar parameter which has stabilizing character for a continuous medium 

has dual character for a fluid contained in a porous medium. 
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